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1.0 INTRODUCTION

Our knowledge of unsteady boundary layers has been enhanced in recent years by

a combination of experimental and computational investigations. The former

have been concerned mainly with the problem of airfoils which oscillate in

subsonic flows but include a small number of transonic flow investigations.

The latter have involved the solution of boundary-layer equations for flows

over cylinders and airfoils and have been concerned largely with the nature of

the singularity which occurs near separation. Solutions of the Navier-Stokes

equations have also been obtained to provide an overall understanding of the

flow patterns at conditions near or at dynamic stall. Useful reviews of prev-

ious work have been provided by Telionis (1979), McCroskey (1982), Williams

(1977) and Cebeci (1982).

The experimental investigations have been carried out mainly to improve

understanding of flow around helicopter rotor blades and include the low-speed

measurements of McCroskey et al. (1982), Carr et al. (1977), Carr and McAlister

(1983), Young (1982), Geissler (1983) and Cousteix et al. (1981) and transonic

flow measurements of Tijdeman (1977), Davis and Malcolm (1979). The range of
measurements of McCroskey et al. and Carr et al., in particular, is extensive

and includes more than fifty combinations of Mach number and parameters of the

unsteady motion for each of eight airfoil sections. As a consequence, four

flow regimes have been identified and correspond to no stall, stall onset,

light stall and deep stall. It appears that the breakdown of the unsteady

boundary layer leads to a large vortex which is formed near the surface at

large angles of attack and causes stall to occur shortly thereafter.

Computational investigations of oscillating airfoil flows have been of two .

main types. In the first, solutions of the Navier-Stokes equations have been

obtained, for example by Mehta (1977) for incompressible laminar flows and by

Shamroth (1981) for compressible turbulent flows. Further studies of this

type are clearly necessary and results so far show qualitative features of the

flow field and lift curves which are Again in qualitative agreement with
experiment. The second approach has involved the solution of the boundary-

layer equations. The investigations of Cebeci and Carr (1981, 1983) have

reported results for an external velocity distribution typical of those found

near the leading edge of thin airfoils. The existence of a singularity in the
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solutions is evident in the vicinity of the leading edge at the higher angles
of attack and has led to the subsequent investigations of its nature, see for
example, Cebeci, et al. (1983).

The need for more fundamental investigations of the use of boundary-layer
equations to represent unsteady flows is clear from the airfoil investigations

* of the previous paragraph. In this connection, the oscillating flat plate
investigations of Cousteix et al. (1981) and the contributions of Telionis
(1974), van Donuelen and Shen (1982a,b), Smith (1982) and Cebeci (1979, 1982)
for flow over a cylinder impulsively started from rest are particularly
relevant. In addition, Williams (1982) and Williams and Stewartson (1983)
have made important contributions to our understanding of the nature of the
singularity and its consequences. Perhaps the most important contribution has

been that of van Donmmelen and Shen (1982a) who solved the boundary-layer
equations in Lagrangian form and revealed the existence of the singularity.

This result suggests the need for interaction between the viscous and inviscid

flow equations.

Though a number of studies have been conducted to improve our understanding of
unsteady two-dimensional boundary layers, very little work has been done for
unsteady three-dimensional flows. Experimental information is lacking, but
the similarity between the two- and three-dimensional equations suggests that
the same phenomena may occur. The three-dimensional boundary layer on a body
of revolution at angle of attack is obviously more complicated than for air-
foils or cylinders but is similar on the line of symmnetry, provided that cross-
flow gradients are taken into account. In the case of steady flow past slender
spheroids, it is known [see, for example, Cebeci et al. 1980] that separation
does not occur on the leeward side until well past the maximum thickness if
the angle of attack a is less than a critical value a (-41-), but for a >a

C
* there is a dramatic change with separation occurring very close to the nose.

If the external velocity is prescribed, this abruptly terminates the
integration. For thin airfoils there .is a parallel situation, as shown by

*Cebeci et al (1981a), but the critical angle is now of the order of magnitude

of the airfoil thickness.

A study of the unsteady boundary layer on the line of synmetry to determine
the relation between unsteady separation and singularities in the solution is
reported here. For the first step we concentrate on the separation
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problem and do not consider the effect of moving stagnation points which is

important but adds considerably to the computational difficulties. The par-

ticular problem we study is the development of a boundary layer on a thin

spheroid in uniform motion at constant angle of attack after an impulsive

start. Angles of attack ranging from 300 to 500 are chosen for this purpose.
Of these a -450 corresponds to nose separation which is marginal while O - 500

corresponds to a strong steady-state singularity. The problem has been formu-

lated for the general case of spheroids at angles of attack and specialized to

thin bodies, and specifically those for which the thickness ratio T is van-

ishingly small.

3
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2.0 APPROACH

With respect to a cylindrical-polar set of coordinates (x,r,e) and origin 0,

let the equation of the spheroid be

T2x2 + r2.21)-.""

where r is a positive number less than unity, which may be regarded as a

measure of the thickness ratio of the prolate spheroid. Here we have nondimen-

sionalized the coordinates and time t taking the semi-major axis and the
velocity at infinity to be unity. We assume that at an infinite distance from - "

the spheroid the velocity of the fluid is in a direction lying in the merd-

tonal plane and at an angle a to its major axis. Further we assume that

outside the boundary layer the inviscid flow is irrotational and attached and

neglect the circulation around the spheroid. The achievement of our goal of

determining the development of the boundary layer, given the main-stream

velocity, would be an important step forward in the task of predicting the

circulation around bodies of revolution at incidence.

With these assumptions the velocity of slip on the spheroid, according to
inviscid theory, has components

ue = Vo() cosm cos$ - Vg0(T) sina sin cose (2)
(2) -

we = V90( ) sinm sine

where
2• 3/2

V(') = 2 (- 2)312 "" *i" 
•*0 .2 )1/2 2 z-:-

(1- r - 1/2 -r2log[(l + ,/ 1-' ' )I(1
(3) .2Vo(.)..0.'-

2V ('')V90 ( l  ZY (-')
0

(I l-x 2 1/2 (I° x )

+ xZ(Tz. 1111/1

t
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Figure 1. Notation for prolate spheroid.

and a is a specified function of time, being constant in the present study.

The configuration in the meridional plane is illustrated in figure 1 with S the

stagnation point of the inviscid flow defined by e = 0 x = -{l - r2 tan2c}.

Turning to the boundary layer we define (u,vv'r.,w) to be the velocity components

respectively along the meridional lines 0 = const, along the normals to the

spheroid and in the azimuthal direction where v is the kinematic viscosity of

the fluid and is assumed small. Then

. (h2u) + L- (h w) + . (hlh 2V) = 0 (5)

au u au w au u wK2  - (6) ..
+ + + v + w2 (6)

au u aw waw 3w 2w (7)W

hl + [1 v xlwr -1111/ (.-7)

-x reu5Y 2 u e 56
2 2 ay

where w/v measures distance along the outward-drawn normal from the body,
2 2 1i/2 2/

[ 2 r h2 - ,(l - x) (8)

are the metric coefficients,

.. 
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x1 + x2 ( 2 - 1)]112(l - x2 1/ 2  ()

is the geodesic curvature of the surface lines x = const, and p is the reduced

pressure. The appropriate boundary conditions are

u =v =w =0 at y= 0
(10a)

u+ ue, w-we as y e

The specification of the problem is completed by assigning initial conditions

on u,w with respect to space and time. The spatial conditions are that on the

line of symmetry w = 0 and u vanishes for all y at that value of x for which

Ue = O. This is physically and mathematically sensible for impulsive prob-
lems in which the stagnation point is fixed but is not necessarily correct

when the angle of attack is varying with time, see Cebeci and Carr (1981) for

example. The temporal conditions are that at t = 0 both u and w vanish on the

body y = 0 on the line of symmetry but are equal to their external values 0

elsewhere. Thus

u =w =0 at y =O, t =0 for all x

while (lOb)

u=uew = we for y > 0, t =0 and all x.

In the early studies of the properties of the boundary layers on prolate

spheroids conducted by Wang (1970) and Hirsh and Cebeci (1977), some diffi-

culty was experienced in continuing the solution past the nose at x = -1, pri-

marily because of the singularities in the properties of h1, h2 and K2 there.

A common procedure was first to perform the integration along the line of sym-

metry from the stagnation point to as near the nose as possible and then to

jump across the nose to the same value of x on the leeside (e - w) assuming

that the flow properties are essentially unchanged. After that integration on 3

the leeside may be continued as far as separation. Afterwards the procedure

may be extended to more general points in the neighborhood of the nose. This

technique is effective at moderate values of r [r a 1 corresponds to a sphere]
but leads to difficulties as T . 0 especially at high angles of attack. Cebeci 3

et al. (1980) demonstrated that the singularity my be removed by a suitable

6
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transformation of the surface coordinate system enabling a smooth passage to
be made around the nose. The transformation is equally effective for unsteady
boundary layers and is now explained for the limiting case of a paraboloid
which corresponds to T =-0.

The first step is to define new surface coordinates by

dS hlIdx El + xI( 2  _ 1)]1/2 dx

2 'rlx)(1

X S cose, Z S sine, Y y/rT /T

with S= 0 at x =-1, and new velocity components by

u =U cose + W sine, w =W cose U sine, v V/'r (12)

The purpose of this transformation is to convert the polar form of the equa-
tions (5) - (7) into a quasi-rectangular-Cartesian form which is free of

* singularities. The governing equations reduce to

'au awl av
-a~ 7 157+ L(UX + WZ) - 0 (13)

~+N (U2U+ W 2) +LW (WX -UZ) +V = LU + (14)

2 1aw + a w(16)

2 2

*For the paraboloid we let T 0 after defining

when

S ru~-~ - exp(I + p 2 1 /2- (18)

0l+p) +1



s I1 2 p1/2 1
N - L " (19)pS(1 +p)1/

and so Eqs. (13) - (15) are independent of T. We write (Ue, We) for the

limits of (ue cose - we sine, ue sine + we cos e) as T .0 and then

Ue= o - 2(1 - ) sina (20)

We = pZ Cosa 2XZLp sin (21)

e (1 + p2 )1'2 +  S

sG that

au au
= e e) + LWe(WeX UeZ) (22)
N1 (Ue eay e e-T

awe awe

W2 N(Ue Mr + We -) - LUe(WeX " UeZ) (23)

These equations are free of all geometric singularities and in particular at

the nose p = 0. There is therefore now no special problems about integrat-

ing the equations through the nose although it should be noted that the equa-

tions are only appropriate at distances from it corresponding to p = 0(1).

This is the natural length scale for the paraboloid but in terms of general

thin axisymmetric bodies this distance is 0(r2) from the nose.

2.1 Line-of-Symmetry Equations

These may be deduced from the general form Eq. (13) et seq. given in the

previous section using similar arguments to those in Cebeci et al. (1981). We

shall not repeat them in detail but merely state the transformations and the

final form. First we write

U- Uo(X,Y,T) + O(Z2), V V0(XY,T) + O(Z
2) (24)

W- Z exp[ - +-'p]WI(X,Y,T) + 0(Z3) (25)

and allow for negative values of X by permitting p to become negative. When

p < 0 the sign of S in Eq. (18) must be changed and generally X * S sgnp in
the limt Z * 0. On the leside line of symtry p < 0.

* . .--;'.. N --



We now substitute Eqs. (24), (25) into (13) et seq and take the limit

Z 0 0. The external velocity components reduce to

= cosa - 2 S [1 + p2) 1 2 + 1]cosa + 2p sin (26)

(1 + p') IsWl (1+ pZ)l,2

To put the equations into the most convenient form for numerical integra- tion

of the impulsive problem, with primes denoting differentiation with respect to

q we write

n Y ,- V = T-1/2(1 + p2)1/4v nPT-1/2 Uo  (27)(1 + p2)/4T 1/21 o 2(1 p2)-
(l + p)/ T 0 0 (+ p) 0

Uo = U0 ft W1  9 g (28)
e

where f and g are functions of p,n,t. Then

Uo i- - f(a Ue + - ) " a2g (29)

where

P - ( + p,2 ), 2

2(1 + p2  (p + 1) + 1 1 + (1 + p2 )1/2 (30)

and the appropriate boundary conditions for f and g are:

f =f g = g' = 0 at n = 0,

(31)
f' 1, g' Wle as n

The momentum equations reduce to

l'f6  *af' af-::'f
f", + + P6gf, + P2[1 . (f') 2 + P13nf = P7 a, + PIO(f " f -

(32)

of + Plfg + P p4(g) 2 + Psf~g, + P12 +

7 3T 10 )p a

9
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where

dUo  dUo

P1  T 0aJo +-P 2  3T -
e

P3  T, P= -Ta2, P5  Ta3U., P6  Ta2
e L

(34)
STO + 2 1/2P7 =T(1+p)1 P10 =TUoe

221e + 3Uo W + P I (I + p2 1/2P12 = T(U 2 l a Wle Uoe -'p 13 l

= +
(l + p) + (I + p)

These two equations (32) and (33) are in a convenient form for numerical
integration since at T = 0 fg and their derivatives are given by

2 2
f rerf(xn) I..(l - )• g = W1efll

f= erf(xn), g' W1ef' (35)

2> 2 2
f 2X n W1 ef"

where

~ +p2 1/4X = (1+ p2) /.":.,.

Further, the integration in the direction p increasing may be assumed to start
at the stagnation point p a 2 tanm, where f,g are independent of p and sat-
isfy partial-differential equations in n,T only, and proceeds in a straight-
forward way since U0  > 0 when p > 2 tana. A similar remark applies to the
integration in the direction of p decreasing since U < 0 when p < 2 tan.

00
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3.0 SOLUTION PROCEDURE

The numerical solution of equations (32) and (33) was obtained using the Box

method, a two-point finite-difference method developed by H. B. Keller and

extensively used for two-dimensional flows, both steady and unsteady, and for

three-dimensional steady flows. Here we use two versions of the Box method,
the regular box in regions where fm > 0 across the layer and the zig-zag box -:

in regions where f' < 0 at any value of q. Specifically in advancing the

solution to a new value of T or p, this property of f' determined the choice

of the box scheme. The details of the box scheme are described in Bradshaw et

al. (1981).

Calculations of the unsteady boundary layers were carried out for angles of .

attack a of 300, 400, 450, 500. Provided flow reversal did not occur, the
solution of the equations by the regular box was appropriate, no numerical

difficulties were encountered and the solution was smooth. The step-sizes

chosen for all computations were Ap = 0.2, AT = 0.2; in selected cases compar-

isons were made with studies using step-sizes of Ap = 0.1 and AT = 0.1 or

smaller and the differences were negligible. However, once flow reversal

occurred, the regular box became prone to instabilities and was replaced in

this domain by the zig-zag box over all n and the step-sizes in p and T were

reduced. Various calculations were carried out with a nonuniform mesh in p, T

in the neighborhood of separation. The smallest value of Ap was 0.0005 near

the separation point; the step size in T was progressively reduced as the

calculations proceeded, the smallest value being 0.01. Elsewhere Ap was

fixed at 0.2. Comparisons with solutions using larger step-sizes gave

confidence that the results were reliable outside the separated region for

T < 7, but that inside the separated region smaller step-sizes in p and T

were necessary to avoid small oscillations which developed for T > 5.5 at

* 50°.

.



4.0 RESULTS

The principal properties of the unsteady boundary layers are the skin-

friction components defined by

-1f/2p,) 2 1/4 oU;(o,p,T) T U f(op,T) = (1 + p) (- (36a)
0

W'(op,T) T-1 /g"(o,p,T) (1 + p2 )1/4 (36b)

and the displacement thicknesses defined by

1(pT) = U T1/2 ltm (n - f) = (1 + p2)1/4 5 (U - U )dY (37a)
°e n 0 e 0

A2(p,T) =T1 /2  lim [nWl -g) = ( + p2)-1 /4  j (W1e Wl)dY (37b)n - = 0 e
1

These are displayed in Fig. 2 for a = 300 when separation does not occur.
In Fig. 3 we display the properties of U for a = 400, a solution which

is on the verge of separation, and in Fig. 4 we show all the functions [Eqs.
(36) and (37)] for a = 500 when separation clearly occurs. Where appropriate,

the corresponding steady-state results of Cebeci et al. (1980) are included in

these graphs for comparison purposes.

The graphs show that for p > 0, i.e. on the windward line of symmetry, the
steady-state solution is rapidly approached as T increases and is essen-

tially established for T > 1.

S

For p < 0, i.e. on the leeward line of symmetry, the flow properties in the

steady state have two interesting features. First for any value of a, the
cross-flow displacement thickness A2 rapidly decreases with p and soon

becomes negative, even if separation has not occurred, and in fact is exponen-

tially large and negative when p is large and negative. The unsteady data for

a * 300, Fig. 2d, confirms this trend but the limits T finite and p . for
the unsteady flow and p . - for the steady flow are not interchangeable. The

steady-state solution for A2 becomes exponentially large and negative for

p > -2, and the approach of the unsteady solution to the steady state has the

unusual feature in that for sow T, say T > 2, the steady and unsteady solutions

12
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agree quite well up to some negative p after which the unsteady solutions
flatten out as they approach p.-*. As T increases, the divergence of steady
and unsteady solutions occur at progressively more negative A2, and as T +
the steady and unst eady solutions agree up to A2  -0

Second the steady-state meridional component U' of the skin friction does not

tend monotonically to a limit as p -o- 0,but even at small values of a has a
trough followed by a peak due to the overshoot in the external velocity (26).

Further, at a > a~ A 410, U0 actually vanishes at p - pc(a), when pc
is a point near p a -1 depending on the particular choice of a. The solution is

singular at this point and the calculation must terminate.

The unsteady solution approaches the steady state as T *-for a < a~ (Figs. 2
and 3) but more slowly on the windward side. Some overshoot may occur but it

is small and may be an indication of a fall-off in accuracy of either the i4

steady-state or the unsteady solutions. For a > a~ (Fig. 4), the same

remarks apply as long as p > pc(a) and flow reversal has not occurred. For
smaller values of p, reversed flow occurs and there is no corresponding steady-

state solution. If a a 450, separation first occurs at T - 5.64 when p =-1.2;
it remains confined within the range -1.0 > p > -1.4 and is weak until T =6

when the computation was terminated. It might be argued that Wand A2 are
approaching limit states as T +0but A1 is definitely showing signs of a pro-

nounced negative minimum near p =-1.2.

Separation is marginal for c~=450 and so a more extensive computation was
carried out for a a 500. In this case separation set in when T =3.71 at
p = -1.083 and gradually spread out as T increased to extend around the range
-0.908 < p < -1.396 at T u 6 when the calculations became somewhat dubious

due to oscillations and instabilities, a behavior previously observed in

relation to the circular cylinder started impulsively from rest, Cebeci
(1982). The behavior of the separated solutions of U0 for p < -1 and 4 <

T < 6 are shown in figures 4a and 5b, indicating that reattachment occurs in this
time interval. It is inferred that after slightly larger time than T a 6,

* reattachmnt does not occur and separation approaches that of steady state
(p -0.91),, as corroborated by figure 5a where a, develops a rapid growth rate.I

* The curves of,&,,, not shown for p < -1 in figure 4d,, do not develop any unusual
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features, they become monotonically more negative as p decreases, and in addi-

tion the curves for T > 4 are practically conicident with the T - 4 curve to

at least p - -2. Over the range of T considered (T < 6) the variation of A2
and W, appears to remain smooth but and A1 develop sharp minim just10
downstream of separation.
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5.0 THE SINGULARITY?

We now investigate whether the results obtained for a -500 allow us to

conclude that when the computation terminated the flow properties are consist-

ent with a singularity centered just downstream of separation in the neighbor-

hood of T * 6.

Two possible structures for a terminating singularity to the solution have

been proposed of which one is due to Smith (1982). In his model, the viscous

terms are significant at breakdown, which is a generalization of the Goldstein

singularity, and both skin-friction and displacement thickness are infinite.

No example of such a structure has yet been found and although we cannot rule .

out its relevance in the present flow, our inclination is to prefer the second

possibility, due to van Dommelen and Shen (1982a), in which the skin friction

remains finite while the displacement thickness becomes infinite. Strong

evidence in favor of the unsteady boundary layer on a circular cylinder

behaving in the same way has been provided by van Dommelen and Shen, Cowley

(1983) and Ingham (1984) and on an oscillating airfoil by Cebeci et al. (1983).

The essence of the singularity is inviscid and independent of the pressure

gradient. Thus, in the case of a two-dimensional boundary layer, with -.-

equations
au

av a, (38a) -

2Du au au 1 + a u ".:..
-t + u7- + v - -_ x l, (38b)

aypx

let us suppose the singularity is centered at t ut o, x- x0. Then in its

simplest form we write

u u-u0 + (to - t)1/2 u(xy) (39)

when 0 < to - t << 1, Ix --xol << 1,

where

x [(x - xo ) uo(to - t)]/(to - t)3/2, .. y(to " t)1/4  .

15
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and the determination of ' reduces to quadratures. This structure must be

matched to other structures near y - 0 and as y . - but the principal gross

features can be inferred from (39). The displacement thickness has a peak at

x = 0 which becomes infinite like (t - t)"1 4 as t o toe On the other hand,

the skin friction remains finite as t * to for all x. The velocity profile

becomes very flat as t . to provided ' " 1, with u a -u. over a length

(t0 - tf 1/4 normal to the surface, the adjustment to the boundary conditions both

on the surface and at infinity taking place over effectively finite ranges of

values of y. Further details of the structure of the singularity, on the basis

of a Lagrangian representation may be found in van Dommelen's thesis (1981)

and in Elliot, et al. (1983) on the basis of an Eulerian representation as

exemplied by (38).

This theory may be adapted to our problem at least in principle. We

replace u,x,y in (39) by f',p,n and neglect the left-hand side of (32) in

the neighborhood of p = po, t = to. Then the equation for ' is the same

as that for u and we may infer that f is as likely to develop the van

Dommelen and Shen singularity as is u in the circular cylinder problem. The

displacement thickness A1 can be expected to develop an increasingly sharp

peak as t is increased whereas the corresponding component of skin friction

0U remains finite and smooth.

The evidence in Fig. 4 supports these conclusions, but a more severe test

is to plot the streamwise displacement velocity, 3A1/ap, as a function of p for

various T and this is done in Fig. 5a after smoothing the data for p < -0.95.

The results of Cowley (1983) for the solution of (38) with ue = sinx show that

the singularity occurs at T v 3.0. The similarities in form are striking; the

principal difference being a slight drift in MA1/ap away from separation as T

increases. The more detailed plots of Ui n Fig. 5b confirm the smooth behavior

of this function.

If now we examine (33) we see that the same form for g' may be assumed
I I . .

provided go is taken equal to fo and again the left-hand side of (33) may be

neglected. This means that A2 should also develop a needle-like singularity and

Fig. 4d shows no evidence of this. However, plots of 3A2/ap as functions of p

for various T, displayed in Fig. 5c, show clear signs of the development of a

strong minimum, similar to that of Cowley (1983), which does drift towards

16
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separation. The alternative possibility that A2 is finite seem to require that

as n increases g' has reached the value W1  before the inviscid zone n 1 is

reached. Were this the case, the two sides of (33) would not balance over this zone

since then f' fo j 1.

17
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6.0 DISCUSSION

In this report we have examined the evolution of the unsteady boundary layer on

the line of synmetry of a paraboloid which is set, impulsively, into motion at

T - 0 with uniform velocity and at an angle a of attack. We have shown that

if a < ac (=410) and the steady-state boundary layer exists everywhere on this
line, the unsteady solution approaches it reasonably quickly and without any

significant special features. The same is true for a > ac on the windward
side. On the leeward side, the steady-state boundary layer separates and the

solution must terminate there because the external pressure gradient is fixed.

The unsteady boundary layer is initially unseparated but develops a region of
reversed flow after a finite time. A short time later the first displacement
thickness A1 develops a pronounced peak and we advance arguments for

believing that this is associated with an incipient singularity which termin-

ates the calculation.
p

The results obtained here are also relevant to other bodies, most obviously

prolate spheroids but others as well. Our earlier studies demonstrated that

in the neighborhood of the nose, the governing equations for a spheroid can be

transformed into a form in which the paraboloid equations appear as a natural ! -_
limit 0 0, see Eq. (17)) in which the various parameters of the flow
remain finite. Hence we may confidently expect that any special feature, such
as separation, which appears in the one will also appear in the other. Wang

and Fan (1982) have studied the unsteady boundary on a prolate spheroid for

a 450 for a value of x of 0.25 and found that the unsteady boundary
layer did not separate for any t but that the steady-state boundary layer

separated at p = 0.39/T. This result may be in conflict with ours and

moreover a matter of surprise. For not only does a small nonzero r make

very little difference to our form of the equations, but the result is hard to

understand in the general context of boundary-layer theory. At present the
discrepancy is inexplicable. The choice of coordinate systems for integration

around the nose does seem to be very cumbersome and it would be interesting to '
repeat the calculations using the system advocated here. For the purposes of

this discussion we shall set this calculation at one side.

We repeat, therefore, that in our view the phenomena we have discussed in
connection with the paraboloid would also appear in a comparable study of

18



prolate spheroids. In particular the singularity would appear after a finite

time in an Integration of the unsteady equations on the line of symmetry in

the neighborhood of the nose and just downstream of separation if a > ace

generalization of this cohclusion to the unsteady boundary layer over the whole

spheroid is of interest. In principle the integration of four dimensional

boundary-layer equations (x,e,y,t) wavelike with respect to (x,e,t) using

the Keller-box scheme is no more difficult than those for steady two-

dimensional flow, provided we make appropriate modifications to account for

the varying direction of flow across the boundary layer. It just takes longer

because there are more mesh points to consider in the (x,e,t) space. We may

expect that the solution of these equations will develop a singularity on the

normals to a curve C on the spheroid after a finite time, the precise time

varying from point to point of C, and it will be inviscid in character. Indeed

van Dommelen and Shen (1982b) (see also Cowley 1983) have suggested a general-

ization of their two-dimensional structures which seems likely to be appropri-

ate. From our experience with two-dimensional unsteady boundary layers we are

confident that the Keller-box scheme can carry the integration up to the first

onset of the singularity. It remains to be seen whether the calculation can

be extended beyond this time and over what part of the flowfield - certainly

the front portion of the body can be treated but the precise boundaries are

presumably fixed by an application of the Raetz (1957) theory of influence

regions.

Finally, it is of interest to consider the possible impact of this study on

the calculation of steady boundary layers on bodies of revolution. The

extensive computations in ' on prolate spheroids showed that on the windward

part of the separation line the flowfield develops a Goldstein-Brown (1965)

singularity. On the leeside of the ok of accessibility (Cebeci et al. 1981b),

the calculations for large a must, in general, be terminated by the external

streamline through the ok, so that the question of the structures of the lee-

side separation line is irrelevant. At small values of a (=60) this limi- •

tation does not apply but nevertheless the computation breaks down. It is

believed that this breakdown occurs very near leeside separation but a recon-

ciliation with the Goldstein-Brown structure was not achieved. In particular,

the blowing velocity is negative whereas the theory requires it to be large

positive.

19
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A feature of the singularity is that when to - t is small (39), the blowing

velocity is large and positive as x e xo and after peaking becomes

negative in order to bring the displacement thickness back to more moderate

values. Thus there is some parallel here with the leeside separation. Further .

encouragement to this notion comes from the structure, Eq. (39), which suggests

that in the central regime of the singularity, the velocity components are

almost constant. If this is the case, in the leeside separation singularity

the governing equations for steady three-dimensional and unsteady two-

dimensional boundary-layer flow are effectively the same and so the assumption

of a van Dommelen and Shen singularity is as consistent for the one class as

the other.

I.

I o
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